Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 3(11): 2386-2399, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37874199

RESUMO

XIAP, the most potent mammalian inhibitor of apoptosis protein (IAP), critically restricts developmental culling of sympathetic neuronal progenitors, and is correspondingly overexpressed in most MYCN-amplified neuroblastoma tumors. Because apoptosis-related protein in the TGFß signaling pathway (ARTS) is the only XIAP antagonist that directly binds and degrades XIAP, we evaluated the preclinical effectiveness and tolerability of XIAP antagonism as a novel targeting strategy for neuroblastoma. We found that antagonism of XIAP, but not other IAPs, triggered apoptotic death in neuroblastoma cells. XIAP silencing induced apoptosis while overexpression conferred protection from drug-induced apoptosis. From a screen of IAP inhibitors, first-in-class ARTS mimetic A4 was most effective against high-risk and high XIAP-expressing neuroblastoma cells, and least toxic toward normal liver- and bone marrow-derived cells, compared with pan-IAP antagonists. On target engagement assays and nuclear magnetic resonance spectroscopy, A4 was observed to degrade rather than inhibit XIAP, catalyzing rapid degradation of XIAP through the ubiquitin-proteasome pathway. In MYCN-amplified neuroblastoma patient-derived xenografts, A4 significantly prolonged survival as a single agent, and demonstrated synergism with standard-of-care agents to reduce their effective required doses 3- to 6-fold. Engagement and degradation of XIAP by ARTS mimetics is a novel targeting strategy for neuroblastoma that may be especially effective against MYCN-amplified disease with intrinsically high XIAP expression. First-in-class ARTS mimetic A4 demonstrates preclinical efficacy and warrants further development and study. SIGNIFICANCE: XIAP degradation is sufficient to kill MYCN-amplified neuroblastoma which overexpresses and relies on XIAP as a brake against cell death, without affecting normal cells.


Assuntos
Neuroblastoma , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Animais , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Apoptose , Neuroblastoma/tratamento farmacológico , Proteínas Inibidoras de Apoptose/metabolismo , Mamíferos/metabolismo
2.
Transl Res ; 258: 60-71, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36921796

RESUMO

DICER1 mutations predispose to increased risk for various cancers, particularly pleuropulmonary blastoma (PPB), the commonest lung malignancy of childhood. There is a paucity of directly actionable molecular targets as these tumors are driven by loss-of-function mutations of DICER1. Therapeutic development for PPB is further limited by a lack of biologically and physiologically-representative disease models. Given recent evidence of Dicer's role as a haploinsufficient tumor suppressor regulating RNA polymerase I (Pol I), Pol I inhibition could abrogate mutant Dicer-mediated accumulation of stalled polymerases to trigger apoptosis. Hence, we developed a novel subpleural orthotopic PPB patient-derived xenograft (PDX) model that retained both RNase IIIa and IIIb hotspot mutations and recapitulated the cardiorespiratory physiology of intra-thoracic disease, and with it evaluated the tolerability and efficacy of first-in-class Pol I inhibitor CX-5461. In PDX tumors, CX-5461 significantly reduced H3K9 di-methylation and increased nuclear p53 expression, within 24 hours' exposure. Following treatment at the maximum tolerated dosing regimen (12 doses, 30 mg/kg), tumors were smaller and less hemorrhagic than controls, with significantly decreased cellular proliferation, and increased apoptosis. As demonstrated in a novel intrathoracic tumor model of PPB, Pol I inhibition with CX-5461 could be a tolerable and clinically-feasible therapeutic strategy for mutant Dicer tumors, inducing antitumor effects by decreasing H3K9 methylation and enhancing p53-mediated apoptosis.


Assuntos
Blastoma Pulmonar , RNA Polimerase I , Humanos , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , Proteína Supressora de Tumor p53/genética , Blastoma Pulmonar/genética , Blastoma Pulmonar/metabolismo , Blastoma Pulmonar/patologia , Carcinogênese , Ribonuclease III/genética , Ribonuclease III/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...